(((z^2)+7z+12)/(z+1))(((z^2)-2z-3)/(z+3))

Simple and best practice solution for (((z^2)+7z+12)/(z+1))(((z^2)-2z-3)/(z+3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (((z^2)+7z+12)/(z+1))(((z^2)-2z-3)/(z+3)) equation:


D( z )

z+1 = 0

z+3 = 0

z+1 = 0

z+1 = 0

z+1 = 0 // - 1

z = -1

z+3 = 0

z+3 = 0

z+3 = 0 // - 3

z = -3

z in (-oo:-3) U (-3:-1) U (-1:+oo)

((z^2+7*z+12)/(z+1))*((z^2-(2*z)-3)/(z+3)) = 0

((z^2+7*z+12)/(z+1))*((z^2-2*z-3)/(z+3)) = 0

((z^2+7*z+12)*(z^2-2*z-3))/((z+1)*(z+3)) = 0

z^2+7*z+12 = 0

z^2+7*z+12 = 0

DELTA = 7^2-(1*4*12)

DELTA = 1

DELTA > 0

z = (1^(1/2)-7)/(1*2) or z = (-1^(1/2)-7)/(1*2)

z = -3 or z = -4

(z+4)*(z+3) = 0

z^2-2*z-3 = 0

z^2-2*z-3 = 0

DELTA = (-2)^2-(-3*1*4)

DELTA = 16

DELTA > 0

z = (16^(1/2)+2)/(1*2) or z = (2-16^(1/2))/(1*2)

z = 3 or z = -1

(z+1)*(z-3) = 0

((z+4)*(z+1)*(z-3))/(z+1) = 0

( z+1 )

z+1 = 0 // - 1

z = -1

( z+4 )

z+4 = 0 // - 4

z = -4

( z-3 )

z-3 = 0 // + 3

z = 3

z in { -1}

z in { -4, 3 }

See similar equations:

| 4(2x-1)-3x+2(6x-7)-15=0 | | -120=-2(-8x+4) | | 5n+6=-2 | | 6x-3(3x+2)=12 | | 6=-1/u+4 | | 2x^2+14=70 | | 0.5(x+4.0)+0.1x=29 | | 7=48 | | 2(5x+3)-2x+3(2x-4)+10=12 | | -2(u+6)=7u-3 | | -5y+12=3(4y-8) | | 4(2x-2)+3(x-1)+3x+2(5x-1)+2-4=8 | | -2y-42=-7(y+1) | | 6=3p^2 | | 4/3y=8 | | v-2a=9 | | -3(u-4)=5u+44 | | 6x+8-2x+15x-6+15=0 | | 6u-4=4(u-6) | | 9(y-2)=5y-42 | | (x-20)/3=53 | | X^2-9x-18=y | | 3/4(16x^2-20x+12) | | x-7+x/4=-1/3 | | 8x+23+5x-17+12x-14x+18-3+5x-2x+11=-66 | | (2/9y)+(1/2)=(1/9y)+(9/7) | | 5x*6=x | | 3x+15=20+2x-4 | | (2/9y) | | 5/a+3-3/a+4=21/(a+3)(a+4) | | 7m=9m+4 | | x^2-23x-6=0 |

Equations solver categories